

69 South Main Street, Unit 4, Brooklyn, CT 06234 860-774-7350 / Fax 860-774-1308 <u>www.nddh.org</u>

## **<u>NON-ENGINEERED</u>** Septic System Plans Check List (For Installers)

These instructions provide the minimum requirements to assist installers as they prepare complete, code-complying plans for new and repair subsurface sewage disposal systems (permits not needed to add/replace risers, baffles, or filters to tanks or replace d-box covers). Installers must also refer to the Technical Standards, Public Health Code, soils data, and property specifics.

## 1. The plan must include all of the following information:

- □ Property address and owner's name
- □ Plan date
- □ Installer's name and address
- □ MLSS calculations (see next page)
- □ Location, size, and type of sewer lines, couplings/cleanouts, septic tank, risers, and filter
- □ Location and description of leaching system (distribution pipes, d-boxes, and leaching rows)
- □ Select fill and C33 sand requires onsite testing and/or an approved wet sieve (within 30 days)
- □ Property lines\* and street location

\*<u>Property lines-</u>In accordance with the requirements of CT PHC section 19-13-B103e (c) (2) (C), all plans for the construction or repair of a SSDS must be submitted on or with "a plot plan of the lot, which shall be a surveyor's plan if available or one prepared from information on the deed or land records."

- □ Building locations (including accessory structures)
- □ Watercourses
- Ground / surface water drains and drainage structures (including foundation drains and catch basins)
- Buried utilities (Call Before You Dig at cbyd.com or dial 811)
- $\Box$  Nearby wells and water service lines:
  - If the well is buried, it must be uncovered and visible in field
  - Indicate whether the well is drilled or dug
- $\Box$  Existing ground elevations in the area of the proposed system and down gradient
- □ Proposed system elevations (flow lines at house/sewer line connection, into and out of the septic tank, into and out of distribution boxes, and leaching rows)
- Benchmark location and elevation (in/on a fixed / permanent object near the system)
- 2. The plans must show the basis of design: i.e., 3-bedroom home with perc design rate of 10.1-20 min/inch requires 1000-gallon tank and 675 square feet of effective leaching area-ELA; and the proposed design: i.e., Proposing 1000-gallon concrete tank and 225' of 4' x 1' stone trenches which provides 675 sq. ft. of ELA.
- **3.** The plan must show all separating distances or be drawn to scale: i.e., 75' to well or 10' from building served.
- 4. In the case of repairs, show all exceptions or variances requested: i.e., distance to wells, property lines, structures, reduced size, central systems, system on another property, etc.
- 5. Pump Systems-Tech Standards VI: include pump chamber size (interior dimensions), pump make/model/size, pump curve (for Total Dynamic Head-TDH), dose volume and leaching capacity for dose (~20%), pressure line type/diameter/length/bends, on/off and alarm elevations, riser to grade, quick disconnect in riser, lift chain/rope, frost protection/weep hole, 24 hour storage capacity or dual alternating pumps, separate circuit for alarm/pump, building official permit required and auditory/visual alarm. Consider buoyancy (floating) for areas with high groundwater and/or plastic pump chambers.

# All required information must be provided with the plan per CT PHC 19-13-B103e (c) (3). Incomplete plans will be returned for revision. <u>An approved plan and an approved permit to construct are required prior to any system construction.</u>

|                                                           | Worksheet for No                   | on-Engineered SSDS                     |                               |
|-----------------------------------------------------------|------------------------------------|----------------------------------------|-------------------------------|
| Date:                                                     |                                    |                                        |                               |
| Property Address:                                         |                                    | Town:                                  |                               |
| Property Owner:                                           |                                    |                                        |                               |
| Plan Designed by:                                         |                                    |                                        |                               |
|                                                           | :Li                                |                                        |                               |
| Mailing Address:                                          |                                    | Email:                                 |                               |
| Plan Type, Circle one:                                    | New Full Repair (                  | Tank and Leaching)                     | Partial Repair                |
| If Partial Repair, Circle all<br>BASIS OF DESIGN: Residen | 11.0                               | Tank Distribution Lin                  | e D-Box Leaching              |
| Number of Bedrooms or Design                              | n Flow: LargeTub                   | o: Yes No Garbage Dispos               | sal: Yes No                   |
| Water treatment system: Yes                               | No If yes, is there a sepa         | rate system for backwash discharg      | ge? Yes No                    |
| Soil perc rate:mir                                        | /inch Effective Leaching Area      | a required ft <sup>2</sup>             |                               |
| <b>REQUIRED:</b> Minimum Leach                            | ing System Spread (MLSS) or leng   | gth of system calculations if RS $< 6$ | 50"                           |
| RS or Depth to soil restriction (                         | mottling/redox, ledge, etc.):      | inches, HYDRAULIC GI                   | RADIENT or slope:%            |
| (HF) x (FF)                                               | x (PF) = MLSS                      | (in feet) (Tables for                  | HF, FF and PF on last page)   |
| calculations.                                             | the RS please include a separate w | orksheet or cross-section that show    | ws additional information and |
| PROPOSED DESIGN INFOR                                     | RMATION:                           |                                        |                               |
| Proposed septic tank size:                                | Gallons or usin                    | g existing (must be inspected and      | in good condition) Tank       |
| Type: Concrete Plast                                      | ic Water Tight: Yes No             | H20 Load Rated: Yes No                 | Filter Type:                  |
| Tank Risers Needed: Yes                                   | No If Yes, Covers Left on Tank     | x: Yes No Safety Device to             | be Installed: Yes No          |
| Description of leaching system                            | proposed:                          |                                        |                               |
| ELA credit ft <sup>2</sup> / linear ft.:                  | X Total system length              | = ELA provided                         | ft <sup>2</sup>               |
| MLSS Provided:                                            | ft Maximum leaching syste          | em depth into original grade:          | inches                        |
| Variances Requested:                                      |                                    |                                        |                               |

**Pump System Needed:** Yes No If Yes, See #5 on first page for necessary items and contact the pump manufacturer for assistance with proper pump selection based on vertical height, dose, and pipe type/size/length/bends.

## **MLSS Calculation Tables**

1/1/2024

### HYDRAULIC FACTORS (HF)

Hydraulic Gradient (% Slope)

|                        |             | <1.0                           | 1.0-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | 10.1-<br>15.0 | >15.0 |
|------------------------|-------------|--------------------------------|-------------|-------------|-------------|-------------|-------------|--------------|---------------|-------|
|                        | 0.1 - 17.9  | See Comments in Section VIII A |             |             |             |             |             |              |               |       |
|                        | 18.0 - 22.0 | 72                             | 62          | 54          | 48          | 42          | 34          | 30           | 28            | 26    |
| Receiving              | 22.1 - 26.0 | 66                             | 56          | 48          | 42          | 34          | 30          | 28           | 26            | 24    |
| Soil Depth<br>(Inches) | 26.1 - 30.0 | 56                             | 49          | 42          | 34          | 30          | 28          | 26           | 24            | 20    |
| (menes)                | 30.1 - 36.0 | 48                             | 42          | 34          | 30          | 28          | 26          | 24           | 20            | 18    |
|                        | 36.1 - 42.0 | 42                             | 36          | 30          | 28          | 26          | 24          | 20           | 18            | 16    |
|                        | 42.1 - 48.0 | 36                             | 32          | 28          | 26          | 24          | 20          | 18           | 16            | 14    |
|                        | 48.1 - 60.0 | 30                             | 28          | 24          | 22          | 20          | 18          | 16           | 14            | 10    |
|                        | >60.0       | MLSS Need Not be Considered    |             |             |             |             |             |              |               |       |

#### **FLOW FACTORS (FF)**

#### Flow Factor = Design Flow/300

**<u>Residential</u>**: The design flow for residential buildings is 150 GPD per bedroom up to three. Beyond three bedrooms, the design flow is 75 GPD per bedroom for single-family residential buildings and 125 GPD per bedroom for multi-family residential buildings.

For a central SSDS serving a single-family residential dwelling and a residential outbuilding, the main dwelling shall utilize the FF based on the single-family criteria and the FF shall be increased by 0.50 for each bedroom in the outbuilding.

| <u>Single-family buildings:</u><br>1 Bedroom = 150/300 | <u>FF</u><br>0.5 |                                                 |
|--------------------------------------------------------|------------------|-------------------------------------------------|
| 2 Bedroom = 300/300                                    | 1.0              |                                                 |
| 3 Bedroom = 450/300                                    | 1.5              |                                                 |
| 4 Bedroom = 525/300                                    | 1.75             | Increase FF by 0.25 for each additional bedroom |
| Multi-family buildings:                                |                  |                                                 |

Minimum FF is 1.92 (4 bedrooms) and each additional bedroom increases FF by 0.42.

Non-Residential: Design Flow (GPD) / 300

#### **PERCOLATION FACTORS (PF)**

| Percolation Rate          | Percolation Factor (PF) |
|---------------------------|-------------------------|
| Up to 10.0 Minutes/Inch   | 1.0                     |
| 10.1 to 20.0 Minutes/Inch | 1.25                    |
| 20.1 to 30.0 Minutes/Inch | 1.5                     |
| 30.1 to 45.0 Minutes/Inch | 3.0, or 2.0*            |
| 45.1 to 60.0 Minutes/Inch | 5.0, or 3.0*            |

\*If leaching system is entirely in select fill and the bottom of system is above original grade and at least 24 inches above maximum groundwater.